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ABSTRACT

This thesis presents two methods cf compensation for

control systems including mechanical resonances. The first

method is the use of a filter including pure imaginary zeros

and complex poles and the second nethod is a filter using

only complex poles. One bisic model ns been used to develop

the methods.
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I. INTRODDCriDN

A. PROBLEM DESCRIPTION

It is common in the real world to use a motor to drive a

mechanical load. So, wnen the structure is subjected to

periodic forcing, it may well exhibit a resonance or a

number of resonances (harmonics) which can iaad the system

to instability. Two typical examples of the above problem

are the head servo in a disk memory and the electric typing

machine used with word processors.

In order to be familiar with tie problem and see what

causes our system to instability rfe have to study the time

and frequency response of a system which becomes unstable

due to mechanical resonances.

In the following paragrapn we consider the problem in

the frequency domain where it is easier to define and under-

stand.

B. FREQUENCY DOMAIN

Considering a typical control system we know that in

order for this system to be stable *e need a positive phase

margin. The positive phase margin happens if tne gain cross-

over of the system is at a lower frequency than the phase
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crossover on the Bode diagram as shown in Figure 1.1. So tha

resulting phase margin vecrtor (~y) is positive.

If now we attempt to drive one d: more mechanical loads

with our control system than it is possible that the system

may become unstable due t3 the mechaiical loads. The reason

for this instability is tiia resonanos peak or peaks created

by the mechanical loads. In general we can summarise the

problem by the following t t o cases.

(1) At the resonances tha peak of the gain oarve does not

rise above the zero d3 axis.

(2) At the resonanses tha peat of the gain rises above the

zero dB axis

Analyzing each case separately, we can easily understand

that for the first case zasre is id stability problem since

the resonances do not exceed the zero dB axis, which means

that the phase margin we had remaiis the same and if our

system was stable it reaiaias stable.

Considering now the sscond case we see that if one of

the resonance peaks exceels the zero dB axis it will create

a new gain crossover whirh can make the system unstable if

tha resulting phase crossover is at a lower frequency than

the gain crossover i.e. the resulting phase margin will be

negative.

11





(a) (b)

Fiqure 1.1 Possible Phase Margins of the •Model 1
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Assuming that the reader now is familiar with tha

mechanical resonances problem we cia proceed and try to

solve the problem i.e. to compensate a. system which has been

unstable due to these resonmses, using two different

methods.

C. THE MODEL

The model which we will use in. the major part of the

study has to be initially stable. 53 we choose conveniently

a third degree system with one zerD and three poles with

locations that night appear in a physical system whose

Laplace transform has the following form:

G (S) —2500 Co.lSfQ

S(0.2S+ 0(0.0033 S+1)

(Egn 1.1)

As we see in Figures 1.2 , 1.3 the frequency response of

the system proves that the system is stable since we have a

positive phase margin of %2 degrees. In Figure 1.4 we can

see the time response of tie system with a small oscillation

for 0.04 seconds, which also prsv^s the stability of the

system.

13
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Figure 1.4 Time Response of the Stable System,
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Now we have to add t»3 typical "=30nanc53 in order to

se= how the system will become unstable.

The two selected mechanical resoiances are as follows:

FIRST HARMONIC at frequency f 1=2000 HZ with damping

ratio £"=0.005

G(5) =
0.25 I06*+ 0.5-

10'56+1
(Eqn 1.2)

SECOND HARMONIC at frequency f2=5000 HZ with lamping

ratio
f"
= 0.0000 158

G(s)=_7—1
0.4-10 S

2

+0. £32- 10 S + ]

(Eqn 1.3)

After the introduction of the t*o mechanical resonanses

.he transfer function becoaes:

Qq_ E5Qo(o.lS4^
|

sfo.es+ $0,035 S+iXo.25- 10V+ 0.5- lO*
5
S+H)(o.4ldV+0.63lOS4i)

(Eqn 1.4)

The following pages present frequency responses on

Figures 1.5, 1.6 and tins response on Figure 1.7 of this

system, including the two resonances.

From this point in this Thesis we will call Gu (s)

'Model* wherever it is neeied. The •a' means uncompensated.

In Appendix the programs mostly used in this Thesis are

given. Program 1 is suitable for culcalating the frequency

17





response of the system with suitable modif ication for -ach

case. Program 2 is suitable for calculating the time

response of the system with suitable modification for each

case also. Program 3 is suitable for calculating the tims

response of the system, whan we use is a compensation method

imaginary zeros and complex poles. The graphs have been

obtained using the Versatac pLotter of the Naval

Postgraduate School compiter IBM-3333 using the Digital

Simulation Package (DSL) and/or ZSA? III. In the phase

curves when the phase exoaeds the -3SD degrees the plotter

jumps to its next value aid the curve looks discontinued but

in reality it is not.

13
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TRANSIENT RESPONSE OF THE UNCOMPENSATED SYSTEM
BRSIC MODEL
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Figure 1.7 Time Responss of the System with ths Resonances.
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D. DEFINITIONS

In order to follow ths thesis easily, it is a good idea

to refresh our memory with a few definitions.

1. GAIN CROSSOVER : This is ths pDint on ths plot of ths

transfer function at which the magnitude is unity i.e. the

point at which the gain carve crosses the zero IB axis.

2. PHASE CROSSOVER : This is ths point on the plot of

ths transfer function at which ths phase is -180 degrees

i.s. the point at which the phase curve crosses the -180

degrees axis.

3. PHASE MARGIN : This is definei by the equation:

~Y -180+|G(s)| and detecnines the amount of phase shift

required to place the system at the stabiity liait.

U. ROOT LOCUS : Is a plot 3 f the roots of ths character-

istic equation of the closed loop system as a function of

ths gain or some other variable paranetsr.

5. RESONANCE PEAK : Is the maximal amplituds of the gain

curve. Of the frequency response. It occurs at the resonant

frequency, Wr, and is due to complsx poles (roots).

6. RESONANT FREQUEN3I (Wr): The frequency at which

|G(jw)| has its peak vaius

7. DAMPING RATIO : Is the factor ^"=F/Fc where F is the

actual damping and Fc = 2x"VJxlT the critical factor of a

quadratic having form: G(s) = K/(j£ +FS+lO

22





II. COMPENSATION OSING IMAGINARY ZEROS AND COMPLEX POLES

A. METHOD DESCRIPTION

In this method we will use a oonpensator which includes

imaginary zeros and complex poles. This compensator has the

following general form:

G(s)=
1 2

s + a
5
2
+ Zfu^+cd

2

(Egn 2.1)

Where a is the frequency of the puce zero on the imaginary

axis and Wn is the frequency of the ooaplex poles.

The philosophy of this compensator is that we try t'o

raise the phase curve at a. frequency slightly lower than the

resonant frequency in orier to avoid the negative phase

margin. Then we lower the phase curve after the resonance

has occured so that the gain curve lies under this phase

peak and the resulting lew phase margins are positive at

both gain crossovers, in other words we try to reshape the

phase curve. For this reason we put the zero in the vicinity

of the resonant frequency (2030 Hz) and specifically at a

slightly lower frequency (1950 Hz). In this way we try to

raise the phase curve before the resonance happens. Then in

orier to return the system to its original condition we

introduce the complex poles at a freguency of 2350 Hz.

23





In the following pages ve see the frequency response and

the time response of ths Model 1 whei ire apply this asthod.

B. METHOD APPLICATION

The first data we use for our conpensator is a frequency

1950 Hz for the imaginary zero and a slightly greater

frequency for ths complex polss, 2050 Hz. The resonant

frequency is 2000 Hz. Kaeping the above data constant we

vary the damping ratio of the conpsnsator in order to see

how this variation affects the filter .

In Figures 2.1, 2.2, 2.3 we lave the gain and phase

curves and the Time response of the system with damping

ratio f"=0.05. In Figures 2.4, 2.5, 2.6 we have the gain,

phase and time response :> f the system with damping ratio

f=0. 1.

24
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Figure 2-1 Gain Curve with £=0.05,
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Figure 2.2 Phase Zurva with £"=0.05.
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Figure 2.3 Time Response of the System with ^"=0.05,
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Figure 2.5 Phase Curva with £"=0.1
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Figure 2.6 Time RespDnse of ttie System with f =0.1
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Observing Figures 2.1 through 2.5 it is obvious that "ha

method has not worked since the system remains instable. The

two different damping ratios used i.e. 0.05 and 0.1 are the

two representatives for this point since we do not want to

increase the size of the thesis with unimportant graphs, but

in reality we tried many aore, concluding that the damping

ratio does not have much effect on the system at this point

of the study.

If we observe the graphs closer or we overlap the gain

curves over the phase curves we will see that we have three

gain crossovers and consequently three phase nargins. The

first is the phase margin of the original mole! before the

resonances and it is stable. The otaer two are created from

the gain crossover of the first peak of the 'Model 1 which

crosses the zero dB axis at two points. The first of these

two phase margins is positive and the other is negative.

That means something happened because before we used the

filter both phase margins were negative. So the filter has

worked but partialy and specifically the frequency of the

zeros was correct since the phase cirve has been raised and

the second of the phase nargins became positive. What we

have to do now is to adjust the frequency of the poles in

order to reshape the high frequeny part of the phase curve

and have the third phase margin positive too, which means

that the system will be stable. In Figures 2.7 through 2.15

we can see the gain, phasa and tine response of the system

31





at pole frequencies 2400,2600,2800 Hz respectively. The

frequency of the zeros is also redac23 at 1900 Hz i.e. 50 Hz

less in order to see if ws can hav = a small variation of the

zeros for application purposes.
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Figure 2.9 Time Responss with Poles at 2^00 Hz
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Figure 2-12 Time Response with Poles at 2500 Hz.
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Figure 2-15 Time Response with Poles at 2300 Hz
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Aftsr examination of Figures 2.7 through 2.15 we observe

that the system becomes stable for pDle frequencies 2500 ani

2800 Hz respectively with the only difference being that the

system has less transient DscillatioQ when we pat the poles

at frequency 2800 Hz (system oscillate oscillates for 0.25

seconds) than at frequency 2500 Hz (system oscillates for

0.5 seconds)

In order to understand more comolately the behavior of

tha compensated system for various gains it is wise to

obtain the root locus of tie system. So we have to calculate

tha characteristic equation of the system. The character-

istic equation comes froi the transfer function of the

system with the following formula 3(s)+1-0 but

G (s ) =N (s) /D (s) where N(s) is the nunarator an! D (s) is the

denominator of the transfer function and finally tha

CHARACTERISTIC EQUATION =^(s)+D(s).

After the calculations we obtair. the following equation

of ninth degree:

GEL = S+885J58S
8
+37.0ZloVf 2.8>1o-ld°S + 3.32-10$

5
+

+ I.5<H0'Y+ 5
3
( 8.026- 10

20
+ 5.257- rO*\t)i $

2
f2.3<H0

23
4

+ 3.257. I0
ir

k:)+ $(U76- left- I.I7GI0
2V) 4

(Eqn 2.2)

+ LI7GI02*K

In Figures 2.16 we ha/a plotted the roots of the system

varying the gain (K) from 0.01 to 933444 .
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Figure 2.16 RDDt Ldcus 3f the Systsn.
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From the root locus of the system we observe that the

system can have roots io r.he right half plane, leaning that

foe some specific values of gain (K) the system becomes

unstable.

Summarizing our results up to this point we can say that

this method will work succesfully and generally we can

stabilize a system including HechanLcai resonances with the

proposed filter putting inaginary zsros in the vicinity of

the resonant freguency ani specifically 100-150 Hz below the

frequency of the system conplex poles. The complex poles of

the filter are placed a few hundred Hertz above the resonant

frequency. Choice of the filter poles depends also on the

frequencies of any additional resonances in the system, ani

trial and error methods are neeisl to find the best pole

location. It is wise also to focus cur attention on the

system gain (K) when we apply this nethod in order to avoid

transition of other roots into the right half plane.
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III. COMPENSATION gSIN3 COMPLEX POLES

A. METHOD DESCRIPTION

When a system is unstable because of a resonance, tha

bode diagram shows that the peaking of the magnitude curve

generates two additional gain crossover points, while tha

rapid decrease in phase diia to tha complex polas causes tha

phase curve to pass througa an odd multiple of TT (-130 or

-540 degrees) at a fraqiancy between these gain crossovar

points. Thus, at the higher frequeicy gain crossover thara

is a negative phase margin indicating that tha system is

unstable. In using an additional pair of complex poles to

stabilize the system, ws reshape tha phase curve so that: the

phase crossover occurs at a frequency lower than that of

either gain crossover due to the resonance. This eliminates

tha possibility of the negative phasa margin (i.e. elimi-

nates the encirclement of the Nyquist point). Note that in

designing the compensator the reshaping of tha gain curve

(due to the compensator coaplex poias) must net generate any

additional gain crossovar points. This means that the

damping ratio, £ , of the compensator poles must not be too

small. Some compromise miy therefor be expected, since wa

would prefer a very sharp decrease in phase which in turn

requires small £•
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B. METHOD APPLICATION

It is desirable to 11 ve che plots for the sys-srn in

order to realise how ths filter works. In the following

Figures we have the Nygaist plots of the stable system

without the resonances and with the resonances. Figure 3.1

shows the Nyquist plot of the system before the introduction

of the resonances. This plot is in large scala in order to

show ail the values of the imaginary versus real coordi-

nates, but it is not clear whether tis -1 point is inside or

outside the curve. In Figure 3.2 *9 can sss that the -1

point is not included io tie curve. In Figure 3.3 we can see

ths system after the introduction of resonances. It is easy

to observe that the -1 point is inside the curvs which makes

the system unstable.
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Figure 3.1 Stable System Kyquist plot (large scale)
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Figure 3.2 Stable System Nyquist plot (small scale)
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Figure 3.3 The System with tha Resonance Peaks,
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Now we will try to stabilise v he sys^sn using the

complex pole filter. The filter will have t-he fallowing

transfer function:

G(*) = i

5
2
+ 2{Us + H

(Egn 3.1)

Where we have to specify the pole location and the damping

ratio. From the experience of the previous chapter we know

that =0.1 ^s a reasonaoie value which does not create addi-

tional peaks. So we will jse this vaLae and we will vary the

pole location by trial and error.

Since we want the phase lag to be increased to more than

-350 degrees what we think first is to locate the poles in.

the vicinity of the first resonance and see if this choice

stabilizes the system. E£ that happens we- will change the

pole location to lower and higher frequencies from the reso-

nance peak in order to see how flexible the method is, since

in the next chapter we are piaaiiig to compere the two

methods.

As a first approach «re will use pole frequency 1950 Hz

i.e. 50 Hz lower than the resonance peak with £"=0.1 . In

the following Figures we can see the gain, the phase and the

time response of the systea using this compensator.
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Figure 3.4 Gain Curve of the Systsa with Poles at 1950 Hz.
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Figure 3-5 Phase Curve Df the System with Poles at 1950 Hz.
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Figure 3.6 Tiae Responcs of the System with Psles at 1950 3z.
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Figure 3.7 Nyquist Plot of the System with Poles at 1950 Hz
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Figure 3-8 Nyqaist Plot Sagnifisd at the -1 point.
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Observing Figures 3. '4 through 3.3 we see that the filter

has worked as expected. The phase lag has exceeded -360

degrees. From the time response curve of Figure 3.6 we can

see a small oscillation foe about 3.36 seconds and then the

system becomes stable. Th3 Nyquist plots of Figures 3.7 and

3.8 verify the stability :>f the systs-a too. In Figure 3.3 we

can see the Nyquist plat magnified specifically at the

vicinity of the -1 point md it is ±asy to observe that the

point is lied outside the :urv;.

After we have proved that the method has worked sucsss-

fuly it is necessary to find the limits at the frequency

axis we can locate the complex poi^s in order for the system

to become stable. First we will reaove the poles to higher

frequencies and then to lower frequeQcies. In the following

Figures appear the resui'
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Figure 3.9 Gain Curve oi the Systsa with Poles at 1900 Hz.
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Figure 3.11 Time Responss of the System with Poles at 1900 Hz.
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Figure 3.12 Gain Curve Df the Systsai with Poles at 2300 Hz,
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Figure 3.13 Phase Curve af the System with PoLss at 2300 Hz

61





TRRNSIENT RESPONSE OF THE COMPENSATED SYSTEM
BRSIC MODEL

Z)
o

Wjj^lf^j^lfmtmtimNtM^

^)Tqo 0.08 0. 16 0.24 0.32 0.40 0.48 0.56 0.64 0.72

XSCflLE= 0.08
Y5CflLE= 0.20

UNITS/INCH
UNITS/INCH

TIME (SEC) RUN NO. 1

PLOT NO. 1

Figure 3. 14 Time Response of the System with Poles at 2300 Hz.
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Figure 3.15 Gain Curva of. the Systsm with Poles at 2700 Hz.
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Figure 3.16 Phase Curve of the Systam with PdLss at 2700 Hz-
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Figure 3.17 Time Hesponss of the S7stem with Poles at 2700 Hz.
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Figure 3. 18 Gain Curvss for Various Pole Frequencies.
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In Figurss 3.9 through 3.11 we :a: sae what happens if

we reduce the pole location 53- Hz. So we put the poles at.

1930 Hz and what we see is that the system becomes unstable

as shown in Figure 3.11, the tims response of the system.

That indicates that the lower limit of the pola location is

at a frequency about 13 Hz lowsr than the resonant

frequency. New we try to find the uppar frequency limit. In

Figures 3.12 through 3.14 we can see that the system is

stable as we move tha poles to higher frequencies.

Specifically if we observa Figure 3.13 we see that there is

a longer oscillation periDi (0. 24 saoonds) compared with the

oscillation period of the stabilised system with poles

located at 1950 Hz which was 0.09 seconds. This is one

indication that when we increase ths frequency of the poles

we have a larger oscillation time. In Figures 3.15 through

3.17 we place the poles ac 2730 Hz and the oscillation time

has further increased to 3.53 seconls which certifies again

what we claimed above.

In the last two Figuras wa can sae the change in shape

of the gain and phase graphs as we increase the frequency of

tha pole location to 2200, 2300, 250} Hz, respectively.

Closing this chapter *a conclude that this method worked

for our 'Model 1
. Specifically we can say that when we locate

the poles of the filter wa must taka into acount the oscil-

lation period which is / a ry important: for a system. Tha

range of frequency with which we oan locate the poles is
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large encuqh The lower Unit is abzj'it 50 to 130 Hz lower

•than the resonant frsqueazy. The uppar limit is largerde-

pending always en the location of the next peak and the

permissible oscillation pariod for ti= system.
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IV. COHCLOSIDHS AND RECD SENDATIONS

A. CONCLOSIOHS

Two methods of compensation foe instability due to reso-

nances have been studied. We can conclude that both were

sucessful and both can be used to compensate systems

including mechanical resonances. In ths first method, using

puce imaginary zeros and oompiex polas we need to locate the

zeros at a frequency 109-150 Hz lDwer than the resonnce

frequency of the system, and the complex poles a few hundred

Hz higher. This method has the disadvantage that it gives an

osoillation period that is undesirably long and additionally

-here are some gain vaiies that which make the system

unstable. The second method using only complex poles appears

more succesful because we have a larger range of permissible

pole location. The oscillation period can be signficantly

reduced if we build the filter poles with frequency near the

resonant frequency.

B. RECOMMENDATIONS

In this study we usad only a ' 3odel* built for this

problem. Before we conoluie that tia methods are useful in

applications it is wise to try to apply both methods to more
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examples and specifically to examples with data collected

from the real world. Also it will be wise to study the

effect of tolerances.
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APPENDIX \

COMPUTER PROGRAMS

This appendix is composed of listings of the various

DSL/360 and CSHP III programs used in *-he computer simula-

tions throughout this study.

Specifically on page 73 is ths program used to obtain

the frequency response of ths •Holsl* without the reso-

nances. On page Ik is the program used to ootain the

frequency responce of the 'Model 1 with the resonances. On

page 75 is the program usai to obtain the frequency response

of the compensated system using compLex poles and imaginary

zeros. On page 76 -is ths program used to obtain the time

responseof the compensated system asing complex poles and

imaginary zeros. On pags 77 is tna program ussd to obtain

the frequency response of the compeisated system using only

complex poles. On page 78 is the program used, to obtain the

time response of the compensated system using only complex

poles. To obtain the root locus of page 43 we used the

subroutine 300TL0 on the IBM 3033 oE the Naval Postgraduate

School. On page 79 is the program used to obtain Figures

3.18 and 3.19.
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TI^L
TITL
D
D
i nt;
CONS
CONT
PRIM
DYNA

E FR
E MO

CO
CO

ER N
T N
RL F
T 4
MIC

RW
LC
l*»
<; =

D =
N =

G =

EQ'JENCY FES
DEL WITHOUT
VPLEX S,N,D
MMON/CAREA/
PLOT
PLOT=l
INTIM=4.0,
.0 P -3,W,PHI

IM
FH
IF
v.

a

MO
GR
GI
PH

SAMPLE
CA
CA
CA
CA
CA
CA
CA
CA

TERMINAL
CA

END
STOP

= RA
GW =

10.
CMO
S*(
240
N/D

MP(O.O)
RW
**LCGW
LX(0. »W)
0.2*S+1.
0* (C. 1*S

= AI
1=5
(PH
G=C
a = o

EAL
MAG
113

LL
LL
LL
LL
LL
LL
LL
LL

VAG(G)
7. 2*ATAN
I.GT.O.)
ABS(G)
0.*ALCG1
=LiyiT(-
=LIMIT(-
0=PHI+18

DRWG<1,1
CRWG (2,1
DRWG< 1,2
DRWG(2,2
CRWG(3,1
CRWG(4,1
DRfcG(3,2
CRWG(4,2

PCNSE
RESONANCES

,G
S,N,C,G

CELT=C.C0C6,DELS=0.C025
,FE, IM,MDB,MAG

CJ*(0.003333*S+1.0)
+ 1.0)

2(IM,REJ
PHl=PHI-360

C(MAG)
- • , 5 •

,

- • , 5 • ,

RE )

IM J

,LOGW,MCB)
,LOGU,?HI )

,LCGW,0.0)
,LOGl«f-iaC.)
,GREAL,GIMAG)
,PHI ,MDB)
, GREALtC.O)
,LCGi*,Q.O)

LL ENCPW(NPLCT)
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TITL3 F
TITLE S
D C
G> C
INTGER
CGNST
CONT RL
PRINT
DYNAMIC
*-,
* THE S
*

P

L

c

C
C

N

Q C C C <">> C -REQUHNCY
GC-E
CVPLEX S,N,D,G.C1,D2
C i*MGN/C ARE */ S,N, l,G,D i ,C2
NFLOT
NPLGT=1
FIN T IM=1.C,OELT=C.000 5,DELS=O.OC05
4.0E-3»W,PHI,REi I.v f MDB,MAG

YSTEM V»ITH THE RESONANCE PEAKS

W=RAMP (CO
CGW=3.C+Rk
= 10.**LCGU
=CM°LX(0. »W)
1=S*{ C. 2*5+1 .C)*(C.C03 333*S + 1.CJ
2 = ( S*(0.2 5E-6*S+C.5E-5)+i.O)*(S*(0.4E-7*S+0.622E,.
8 ) + l .0 )

=24CC*(C. 1*S+1.C)

*
*

SAMPL

G=l\/Q
PE=R =

IM=AI
PHT=5
I
C (°H

*>AG=C
^ce=2
GREAL
GIMAG
FHI13

CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

TERMINAL
CALL

END
STGO

AL(G)
MAG(G)
7.3*ATAN
I.GT.C.)
ABS(G)
0.*ALCG1
=LIVIT(-
=LIMIT(-
C=PHI+18

C R fc G < 1 t 1
DRWG<2,1
DRVnG( 1,2
CRkG(2t2
CRWG(3,1
CRWG(4,1
DPkG<3,2
DRVsG(4 ? 2

2(im,pe)
"hI=FHl-36C

C(MAG)
- • t 5< »

5., 5.,
C

RE)
It*)

,L0GW,MC8)
,LCGk,PHI )

,LOGW,0.CJ
,LQGW,-130
,PE,IM
, PHI, MOB)
,RE,C.C)
»LOGk T 0.0)

ENCFW(NPLCT)
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TITLE FREQ!J=NCY RESPONSE
TITLE BCDE
D CCM°LEX S,N,CtGf.Dlt02tC3
D CCWQN/CAREA/SfNt C»G»D1 f D2,D3
INTG C R NPLOT
CONST NFL0T=1
CONTRL FINTIM = 1.0, CELT=1 . OE-2 ,DELS = 1 . CE-2
PRINT 4.0E-3tWt?HI ,RE f IMtMDBtMAG
DYNAMIC

RW*RAMP(C.O)
LCGW=3.C+RW
V»=10.**LCGW
S=CMPLX(C. tW)
C1=S*(C.2*S+1.0)*(0.003 333*S+1.0)
C2=(S*<C.4E-7*S+0.6324E-8)+1.0)*(S*<0.25E-6*S+
C.5E-5J+1.C)

* CCNPLEX PCLES AT FRECENCY 2800 HZ WITH C. RATIO 0.1 *
#__________ ________ X

C3=(S*( 127.55 lE-9*S+71.428E-6) +1.0)
C=C1*D2*C3

m . s

* IVAGINARY ZERCS AT FREQUENCY 1900 hi *
£___ _______ ________ ______ ^

N=2300.0*(C.1*S+1.0)*(S*(27 7.008E-9*S+0.0)+1.0)
G = N/D
RE=P=4L(G)
iy = AIMAC(G )

PHI=57.3*ATAN2(IM,RE)
IP(PHI.GT.C) FHI=PHI-36C
MG =CABS(G)
V0B=2C.*ALCG1C(MAG)
GREAL"LIMIT(-2., 2., RE)
GIVAG=LIVIT(-2.t 2.t IM)
CHI130= C HI+18C

SAMPLE
CALL CRWGCItI ,ICGW,MCB)
CALL CRWG(2*1 iLOGV»»PHI J

CALL CRWG<lf2»L0GW,0.0J
CALL CRWG(2,2,LCGW t -18C.)

TERMINAL
CALL ENCFW(NPLCT)

END
STOP
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*TIME RE
*IMAGINA

E*
IN
X8
X7
X6
X5
X4
X3
X2
ST
TA
NU
XI
CU
TI
PR
CO
en
CU
S.
FG

EN

LABEL
LAB=L

LABEL
LABEL

SPONS
PY ZE
RQR*I.
= STEP
=ERRC
sR«=AL
= LEOL
=CMPX
=4.0E
=CMPX
= 25.

C

CRAGE
ELE C
M(l-3
=TRAN
T=INT
MER F
TPLT
M°5NS
L = S b

TPUT
CONS
LES A
GE XY
C
CP

£ FQ
RCS
!^-CU
(C.C
F*23
PL(C
AG<0
PL(C
+ 6*X
FL(0
E+6*
CEN

EN(1
)=0.
SF<2
GPL(
INTI
CLT
ATIC
T 24
TI,"<£
TANG
T 24
FLCT

i
T

)

CO
•

.1

.0
5
.0
X3
(3
-3
0»
»c
c.
M=

N
00
tQ
CU
CO

A SYSTEM CCMPEJMSATEC USING
CCMPLEX PCLES

.0
tC.3333E-2tX8)
C 1 X 7 I,

t0lc!5.0E-3t2GOO.O»Xto)

tO.Ot 15.81E-6,5C00.C,X4)

),NUM(3)
J=8 3.3 33E-6,173.611E-9, 1.0, ...
277.CC8E-9,1.0
EN,2,NUM T X2)
CtXl)
C.5tCLTCEL=C.005

WITH I. ZEPCS C. POLES
_

ZERCS AT 1900 D.R.=C.l

LAKIS
ZERCS AT 1900 O.R.=0.1
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TITLE
TITLE

3
INTGSR
CONST
CCNTRL
PRINT
OYNAMI

CC
CO
CO
N
N
F

4
C

LC
Vs =
<; =

CI
02
C.

EQUENCV RESPONSE
MPENSATION kITH CONPLEX POLES
MPLEX S.NtD.Gf DltD2f03
MMON/CAREA/S iN, C,G,01 f C2»D3
PLOT
PLCT=1
INTIM=1.2 T DELT=C.0006 1,DELS=O.C006 1

.0«=-3»W,PHI,REi 1^, MOB f MAG

= RAMP
GW=2.
13.**
CMOLX
=S*(0
= (S*(
5E-5J

(CG)
2 + RW
LCGW
(C. ,W)
.2*S+1.C)*(0.003323*S+1.C)
C.4E-7*S+0.6 324E-8)+1.0)*(S*(0.25E-6*S+,...
+ 1.C

CLES AT FRECENCY 1900 HZ WITH D. RATIO 0.1 *
j,

2 77.00 8E-9*S + 10.526E-5 )+l .0)
*C3
C*(C.1*S+1.0)

(G)
G(G)
3*ATAN2(IMtRE)
GT.C.) PHI=PHI-36C
S CG 1

*ALCG1C(MAG)
IMIT(-2.f 2., RE)
I VIT (- 2 . t 2., IM)
FHI+18C

CGN»LEX P

*

SAMPLE

C3
C =

N =

G =

RE
IV
FH
IF
y a

MD
GR
C-I

PH

r a

= ($*<

2310.
N/0
= RF.AL
= AIMA
1 = 57.
(PHI.
G = CAB
8=2C.
EAL=L
MAG=L
1180 =

LL
LL
LL
LL
LL
LL

CR'wGQ
CRWG(2
ORWGd
DRUG (2
DRV«G< 2

DRUG (

2

CA
CA
CA
r \

CA
TERMINAL

CALL ENCPW(NPLOT)
ENO
STOP

1 ,LOG*.MCB)
1 , LCGW, PHI i

»LOG'w»0.0)
, LOG*, -130
,REtIMJ
,REtC .0

)
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TITLE STEP RESPONSE OF THE COMPENSATED SYSTEM MTH C. POLES
INTGER NFLCT
CONST NPLQT=I
CONST K1=2 5.CE+6,P1=31.6E-6,P2=5 000.0
CONST K2=4.CF+6,P3=5.CE-3,P4=2000.0
CONST K2=4.2C25E+6,P5=C.3 33 3E-2,P6=0. 1 , P7 = C. 2 , P8=0 .05
CONST PS=23CC.C,K4=2300.0
INT EG RKS^X
DERIVATIVE

E=R-Y
R=STEP(C.C)
Q=CMPXFL(C.O ,0.0,P1,P2,K1*E)
P=C^PXFK0.C,C.0,F3,P4,K2*Q)
M = R<EALFL(C.0,P5,P)
L=IECLAG(C.0,P6,P7,M)
YCOT=CVPXPL( C.C,C.0,Pa,F9,L*K3)
Y=INTGRLIC.0,YDCT*K4)

CONTPL PINTI^!= 0.7,CELT=2.G5-4,DELS=4.CE-4
PRINT C.CltE,C,YDCT,L,Y

"CALL DR*G{ 1,1, TIME, Yl
TERMINAL

CALL ENCFW(NPLCT)
END
STOP
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TI TL = FREQUENCY RESPCNSE
L

D CC
D CG
INT3ER C

T CU
M K
RL F

CONS
PARA
CCNT
PRIN
OYNA

*•

*

MIC
PW
LO

< =

CI
C2

*PLEX S,NtC,GtClfD2t C3
MMON/CAREA/S »N, C ,G ,0 1 ,02 1 03
UR,NPLCT
R=1,NPLCT=1
l=?Q6,611E-9,K2=90.9CSE-6
INTIM*1.0»DELS=6.25E-4
• 0=-3,.W,PHI ,PE,I^tfOE,.MAG

sRAMP (CO)
GW=3.C+RW
10.**LCGW
CMPtX(C.W)
=S*(C.2*S+1.CJ*(0.0C3 323*S+1.C)
= <S*( C.4E-7*S+0.6 324E-8)+1.0)*(S*( C . 25E-6*S+0.5E-5 ) +

CCNPLEX PCL5S AT FRECENCY 2200, 220C

»

25CC HZ WITH 0. RATIO

C3
C =

G =

PE
IV
PH
IFM
VO
GR
GI
FH

SAMPLE

CA
CA
CA

TERMINAL
IF
CU

=(S*(K1*S+K2)+1.C)
C1*C2*C3

N/0
= REAL (G)
=AIMAG(G)
I=57.3*ATAN2(IM,PE)
(=>HI.GT.C.) FFI=PHI-2fcC
G=CA3S(G)
B=2C.*ALCG1C(MAG)
EAL=LlVIT(-2., 2., RE)
yAG=LIviT(-2., 2., IM)
I180=PHI+18C

LL ORWG( 1,CLR,LCGW,MCP)
LL CRfcG(2,ClP,LCGW,PHl )

LL DRWG(l,4,LCGVv,0.0)
LL QPV»G<2 ,4,L0GV«,-18C, )

ENO
PARA
END
PARA
END
STOP

(CUR. EG. 3)
S=CUR+1

CALL ENCRMNPLGT)

M Kl=189.C35E-9tK2=86.S56E-6

M Kl=16C.CCCE-<9,K2 = 8C.00OE-6
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